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Abstract Indian metropolitan (tier I) cities have been
undergoing rapid urbanization during the post-
globalization era with the unprecedented market interven-
tions, which have led to the rapid land cover changes
affecting the ecology, climate, hydrology, and local envi-
ronment. The unplanned urbanization has given way to
the dispersed, haphazard growth at the city outskirts with
the lack of basic amenities and infrastructure as the
planners lack advance information of sprawl regions.
This has necessitated understanding and visualization of
urbanization patterns for planning towards sustainable
cities. The analyses of urban dynamics during 1973—
2017 using temporal remote sensing data reveal 1028%
increase in urban area with the decline of 88% vegetation
and 79% of water bodies. Consequences of the unplanned
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urbanization are the increase in greenhouse gas emis-
sions, decline in vegetation cover, loss of groundwater
table (from 28 to 300 m), contamination of water sources,
increase in land surface temperature, increase in disease
vectors, etc. An attempt is made to understand the impli-
cations of unplanned growth at the micro level by con-
sidering the prime growth poles such as Peenya Industrial
Estate (PIE), Whitefield (WF), Bangalore South Region
(BSR). The spatial analyses reveal the decline of vegeta-
tion and open spaces with intense urbanization of 86.35%
(in BSR), 87.39% (PIE) and 81.61% (WF) in 2017. WF
witnessed the drastic transformation from agrarian eco-
system to a concrete jungle during the past four decades.
Spatial patterns of urbanization were assessed through the
landscape metrics and rule-based modeling which con-
firms intense urbanization with single class dominance.
Specifically, NP metrics depicts PIE region had sprawl
growth till 2003 with numerous patches and is trans-
formed by 2017 it has become to a single dense urban
patch. This necessitates appropriate planning strategies to
mitigate further erosion of environmental resources and
ensure clean air, water, and environment to all residents.

Keywords Urbanization - Landscape metrics - Rule-
based modeling - Bangalore - Micro level analysis -
Sustainability

Introduction

Urbanization refers to the population transition from
rural to urban pockets for better employment
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opportunities. This process gained momentum leading
to the rapid transformation of landscape with globaliza-
tion and subsequent opening up of Indian markets.
Globally, the population has grown rapidly, of which
54% residing in urban areas. Projections show that 66%
ofthe world’s population to be urban by 2050 with close
to 90% of the increase concentrated in Asia (India,
China) and Africa (Nigeria) (UN 2016). India is
projected to add 404 million urban dwellers highest
among all other countries in Asia. Economic reforms
and growing employment opportunities in cities are
accelerating the pace of urbanization, resulting in peri-
urban growth such as sprawl. Urbanization and urban
sprawl is a demographic and social process whereby
people move from urban areas to rural areas involving
key land use land cover (LULC) changes which impact
the functional capability impairing the provision of eco-
system services with impacts on the local ecology, bio-
diversity, hydrologic regime, etc. (Jaeger and Schwick
2014; Ramachandra and Bharath 2016; Gollin et al.
2016). The current trend of urbanization due to rapid
economic social development is exerting sustained pres-
sure on the natural resources (Zhou et al. 2017) across
the world threatening the sustainability and people’s
livelihood (Zhang 2016). Unplanned urbanization does
not integrate LU planning with the crucial factors such
as mobility, infrastructure, and basic amenities. Rapid
urbanization with globalization is alienating people and
their vital association with ecosystems (Folke et al.
2002), access to resources in addition to impacting
ecosystem functions outside the boundaries and also
within the jurisdiction. The unplanned urbanization with
the disruption of biogeochemical and hydrological pro-
cesses is posing serious environmental challenges at the
local, regional, and global scales (Fletcher et al. 2013).
The rapid urban growth has resulted in serious environ-
mental problems such as water scarcity, contamination,
high emission, insufficient sanitation, land shortage, loss
of pervious surfaces, and microclimate alterations.
(Ramachandra and Kumar 2010; Bharath et al. 2013a;
Ramachandra and Bharath 2016; Ramachandra et al.
2017; Miller and Hutchins 2017; Guan et al. 2018).
Urban growth is being influenced by multi agents at
interweaving levels such as policy, behavior, process,
and pattern. Among all, the policy decision-making
process at micro scale has proven to be the most influ-
ential driving force of urbanization (Cheng et al. 2003).
The urban decisions of forming new towns, satellite
townships, and larger urban agglomerations
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(industries) are often bureaucratic approach devoid of
either stakeholders’ participation or ecosystem conser-
vation process. These ad hoc approaches are resulting in
imbalances in the existing ecosystem with precedence
for sprawl, affecting the livelihood of local inhabitants,
especially the vulnerable. The unprecedented popula-
tion increase, and the demand for land by urban inhab-
itants, industrial establishments, and ad hoc policy in-
terventions with the fragmented un-coordinated gover-
nance have been threatening the supply of food, energy,
and other materials, apart from land use conversions
beyond urban agglomeration (Ramachandra et al.
2012a). A robust understanding of urbanization process
and factors influencing the urban system is essential for
regulating urban development, addressing the issues and
evaluating designated policies (Engelen et al. 2007;
Parnell 2016). Consequently, quantitative analysis of
the impact of urbanization on vegetation, agricultural
land is critical for the management and preservation of
green spaces, agricultural land, and other natural re-
sources. Landscape metrics or spatial pattern indices
have been helpful to interpret, quantify landscape char-
acteristics at a temporal scale (McGarigal and Marks
1995; Herold et al. 2003; Ramachandra et al. 2012a, b).
Multi-resolution remote sensing data with spatial pattern
indices would provide consistent and detailed informa-
tion that helps in framing the strategies for effective
planning.

The modeling of urban systems and visualization of
likely urban growth aids in evolving prudent urban
planning towards the design of sustainable regions.
Modeling LULC changes help to derive temporal
changes and factors responsible for probabilistic predic-
tion based on historical transitions (Behera et al. 2012;
Hua 2017). Markov chain analysis works on the proba-
bility using spatial dependent land use data of different
time periods (Arsanjani et al. 2013). The CA model has
an effective open structure, flexibility, intuitiveness, and
the ability to integrate the spatial and temporal dimen-
sions of the processes, which can be integrated with
other models to simulate and predict landscape patterns
(Clark 2001; Kamusoko et al. 2009; Bharath et al.
2014). The Markov chain integrated with the cellular
automata model (CA-Markov) is simple and provides
advantages of the stochastic spatial CA two-way transi-
tions and predictions, helps in the linking macro to
micro approaches as compared with other techniques
(Halmy et al. 2015; Aburas et al. 2016). Bangalore has
been witnessing rapid urbanization since 1990s, which
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has brought large-scale land use changes. The conver-
sions between urban land, vegetation, and water were
the major change types in the region. The urbanization
has marched towards city suburbs and adversely affect-
ing local ecology (Ramachandra et al. 2012a). The
analyses of urban dynamics during 1973-2017 using
temporal remote sensing data reveal of 1028% increase
in urban area (concrete area, paved surfaces) with the
decline of 88% vegetation and water bodies by 79%
(Ramachandra and Bharath 2016). The consequences of
the unplanned urbanization are evident from the in-
crease in greenhouse gas emissions, loss of groundwater
table (from 28 to 300 m), contamination of water
sources, escalation in land surface temperatures, in-
crease in disease vectors, etc. (Ramachandra and
Kumar 2010; Ramachandra and Shwetmala 2012;
Ramachandra et al. 2015, 2017, 2018b; Ramachandra
and Bharath 2016). The main objective of the current
research is to investigate the impact of urbanization at
microscale and its response in landscape transition. The
specifical attempt has been made to (1) characterize the
urbanization and change in land uses across three di-
verse landscape gradients during 1973 and 2017; (2)
quantify spatiotemporal patterns using landscape met-
rics to understand relationships between landscape pat-
tern changes and urbanization; and (3) modeling urban
growth and visualizing likely changes of these regions
in 2022.

Materials and method
Study area

Bengaluru (commonly referred as Bangalore), the cap-
ital of Karnataka State, India, is the cosmopolitan city
located at 949 m asl with the spatial extent of 741 sq.
km. Bangalore has grown spatially more than ten times
(741 sq. km) since 1949 (69 sq. km.). Due to rapid urban
growth, Bangalore has been experiencing changes in the
temperature and is becoming an urban heat island
(Ramachandra and Kumar 2010). The unrealistic un-
planned growth has been posing a plethora of serious
challenges such as climate change, enhanced green-
house gases (GHG) emissions, lack of appropriate in-
frastructure, traffic congestion, and lack of basic ameni-
ties (electricity, water, and sanitation) in many localities
(Ramachandra and Bharath 2016). Peenya Industrial
Estate (PIE), Bangalore South Region (BSR), and

Whitefield area (WF) are considered (Fig. 1) to under-
stand the driving forces of urban growth at micro levels.
PIE is one of the oldest and largest industrial areas in
south-east Asia with the spatial extent of 922 ha,
established in 1977 by the Karnataka State Small Indus-
tries Development Corporation (KSSIDC) in two stages
with an annual turnover of around Rs. 110,000 million.
The industrial estate houses small-, medium-, and large-
scale industries and it lies between Bangalore-
Mangalore Highway (NH-48) and Bangalore- Mumbai
(NH-4), convenient for transportation. BSR with the
spatial expanse of 3422 ha is primarily dominated by
residential, commercial complexes and IT companies,
located on Bannerghatta road connecting outer ring
road. Whitefield region has developed with an intention
to attract major global technology players, a number of
multinational information technology (IT) companies.
Until the late 1980s, WF was a small village with a
retirement colony of Anglo-Indians covering an area
of 2205 ha. The Export Promotion Industrial Park
(EPIP) is one of the country’s first information technol-
ogy parks—(ITPB), which houses offices of many IT
and ITES companies. The residential constructions were
started later 1990s and especially during 2002 onwards
leading to mushrooming of apartment complexes. The
field investigations were carried out to understand the
growth, type of growth, and consequences on the local
environment at these locations.

Method

Figure 2 outlines the method adopted for understanding
land use dynamics, which involved (i) data collection
and image pre-processing, (ii) land use analysis and
quantification of spatial metrics, and (iii) modeling and
visualization.

Data collection and image pre-processing: The pri-
mary data (Remote Sensing) includes multi temporal
Landsat 1-MSS (1973), Landsat 5-TM (1992, 2003,
2008), Landsat 7-ETM+ (2012), Landsat 8-OLI (2017)
and Google Earth (http://earth.google.com). Landsat
data is cost-effective and available free for downloading
from public domains such as USGS (http://glovis.usgs.
gov, http://earthexplorer.usgs.gov). Survey of India
(SOI) topo-sheets of 1:50000 and 1:250000 scales
(http://www.thesurveyofindia.gov.in) were used to
generate base layers of the boundary. Ground control
points collected from the field using pre-calibrated
handheld GPS (Global Positioning System), online
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Fig. 1 Bangalore and the major growth centers. (a) Peenya Industrial Estate (PIE). (b) Whitefield area (WF). (c) Bangalore South Region

(BSR)

spatial data portals Bhuvan (http:/bhuvan.nrsc.gov.in),
and Google Earth (http://earth.google.com) are used for
geometric correction of remote sensing data. Then geo-
corrected data was resampled to 30 m to maintain uni-
form resolutions across multiple datasets.

Land use analysis and quantification of spatial met-
rics: Land use analysis involved (i) creation of FCC
(false color composite) by using multispectral bands
and (ii) training polygons were selected by locating
heterogeneous patches on the FCC. These training poly-
gons are distributed uniformly across the region (iii)
60% of polygons converted into signatures and land
use classification has been carried out by using super-
vised Gaussian maximum likelihood classification algo-
rithm using GRASS GIS. This classifier has been con-
sidered one of the most superior methods which perform
classification on the basis of probability density function
(Bharath et al. 2013b; Ramachandra et al. 2018a). (iv)
40% of polygons are used for accessing accuracy
through Kappa statistics. Spatial metrics are a series of
quantitative indices analyzed using FRAGSTAT 3.3
(https://www.umass.edu/landeco/
research/fragstats/fragstats.html). Table 1 lists the prior-
itized spatial metrics and their significance chosen for
assessing spatiotemporal patterns of urbanization
(Herold et al. 2005; Uuemaa et al. 2009; Aguilera
et al. 2011; Bharath et al. 2012, 2017; Ramachandra
et al. 2012b) at these locations.
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Modeling and visualization: Markov approach has
provided information about transition probability be-
tween two LU classes with respect to time (¢ to time
t+ 1) and transitional area matrix with respect to likely
land use changes (extent) of each class. Transitional
probability matrix and area matrix are obtained by
Egs. 1 and 2.

P]l P12 "'Pll‘l
P = : : : (1)

Py Pp ...Py,

where P is the transitional probability matrix; P;; is the

probability of i land use to convert into /" class during

the transition period; # is the number of land use classes.
Transition area matrix is obtained by

A]I A12 ...A]n
A= : : : (2)

Anl An2 .. 'Ann

where A is the transitional area matrix; P;; is the sum of
the area of ™ land use to convert into /™ class during the
transition period.

Cellular automata (CA) was used to obtain a spatial
context and distribution map. A’s transition rules use its
current neighborhood of pixels to judge land use type in
the future. CA aided in simulating and predicting land
use changes based on the transitional rules depending on
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Fig. 2 Method adopted for
urbanization analysis
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the state of cell changes according to the neighborhood
cells and the previous state of the current cell with the
local and regional interactions. CA transition rule based
on land use transition is governed by maximum probabil-
ity transition and will follow the constraint of cell transi-
tion that happens only once to a particular land use, which
will never be changed further during simulation.

The land use change patterns follow the Markovain
random process properties with various constrains that
include average transfer state of land use structure stable
and different land use classes may transform to other land
use class given certain condition (such as non-transition
of urban class to water or vice versa). Thus, Markov was
used for deriving the land use change probability map for
the study region. CA coupled with Markov chain was
then used to predict urban land uses using Eq. 3. CA-

CA Based Prediction (Land use t,;

Markov incorporates the transitional rules and probabili-
ties collectively and provides better results.

L1y = P*Ly (3)

where L . 1, is the land use status at time ¢+ 1; L , is the
land use status at time t.

A contiguity filter of kernel size 5% 5 was used to
account the behavior of neighborhood pixels. State of
each cell is affected by the states of its neighboring cells
in the filter. Past land use data (of 2003, 2008, and 2012)
were used for estimating transition probability and area
matrices through Markov model. The transition proba-
bility matrices of three gradients depict transition of
vegetation and other class to built-up (Table 2). The
diagonal values represent the persistence of the class

@ Springer
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Table 1 Landscape metrics analyzed and their description

S no Indicators Formula Range Significance
1 Class area (CA) . >0 It represents the area covered by
CA =7 each land use feature to the total

2 Number of patches (built-up)

3 Largest patch index
(percentage of built-up)

4 Area weighted mean patch
fractal dimension
(AWMPFD)

5 Ratio of open space (ROS)

Apy = Area of land use

A =Total landscape area

NP=n

NP equals the number of built-up
patches in the landscape.

LPI = (a1 (1)

a;=area (m?) of patch i
A =total landscape arca

'S 21n0.25p, /Ins;
AWMPFD = & s,

2
=1

N X

i

where s; and p; are the area and

landscape area.
NP >0, without limit It is a fragmentation Index. Higher
the value more the fragmentation
0<LPI<100 LPI=0 when largest patch of the
patch type becomes increasingly
smaller.
LPI =100 when the entire landscape
consists of a single patch
comprise 100% of the landscape.

AWMPFD approaches 1 for shapes
with very simple perimeters, such
as circles or squares, and
approaches 2 for shapes with
highly convoluted perimeter.

1<AWMPFD <2

Si

perimeter of patch 7, and N is the

total number of patches

ROS = £ x 100%

Represented as
percentage

The ratio, in a development of open
space to developed land.

where s’ is the summarization area of

all “holes” inside the extracted
urban area, s is summarization
area of all patches

from 2012 to 2017. Then, Markov-CA model was used
to simulate land uses of 2012 and 2017, which was
compared with the actual land uses, and the accuracy
of the simulation is assessed through Kappa statistics.
The traditional Kappa statistics lacks in assessing pre-
diction error with respect to pixel location (Pontius and
Millones 2011). The revised kappa statistics were used
to understand the accuracies of the prediction as com-
pared with traditional kappa (Kstandard), a revised gen-
eral kappa defined as kappa for no ability (Kno),
Kquantity and Klocation. The Kquantity and Klocation
are able to distinguish clearly between quantification
error and location error, respectively (Pontius 2000;
Ahmed et al. 2013). After successful validation, land
use for the year 2022 is predicted with the aid of actual

land uses of 2012-2017.

Results and discussion

Land use dynamics: The temporal land use analyses
using multi-resolution spatial data reveal of the decline
in vegetation cover during 1973 to 2017 with an

@ Springer

unprecedented increase in built-up area (Table 3) in all
these three regions (Figs. 3 and 4). PIE shows the
decline of vegetation from 70.22 to 2.11% (1973—
2017), with an increase in built-up area from 0.33 to
87.39% (Fig. 3(a)). Now, PIE has more than 7500
registered industries and 75% of these industries are
mainly engineering and garments sectors, which
comes under the Peenya Industrial Association. The
land use change with an increase in urban area is
due to the expansion of major and small-scale industries
during 1992 to 2003 under second phase (Fig. 4(a),
Table 3). The major drivers of urban growth are major
roads, small-scale industries, bus stops, bus depots,
communication industries, banking, finance cen-
ters, and residential areas. Similarly, WF region
reflects the major changes in its vegetation cover
from 2003 to 2008 (Fig. 3(b)). The vegetation
cover has declined from 61.54 to 15.01% with an
increase in built-up area from 1.6 to 81.61% by
2017 (Fig. 4(b), Table 3). The IT companies such
as TCS, IBM, Dell, Accenture, and Oracle are located
in this region. The large-scale residential apartments,
biotechnology research centers, and commercial
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Table 2 Transition probability matrices of three gradients from 2012 to 2017

Gradient=> PIE WEF BSR

2012=> 2017 BU \% W (0] BU \'% W (0] BU \% w (0]
Built-up (BU) 0.89 0.111 0.000 0.000 0.85 0.05 0.05 0.05 0.85 0.050 0.05 0.05
Vegetation (V) 0.9 0.103 0.00 0.00 0.861 0.139 0.00 0.00 0.948 0.052 0.00 0.00
Water (W) 0.12 0.00 0.88 0.000 0.173 0.014 0.813 0.00 0.184 0.00 0.816 0.00
Others (O) 0.62 0.004 0.00 0.382 0.461 0.016 0.00 0.523 0.272 0.009 0.00 0.718

complexes are also located in this region as part of
the industrial expansion. The region has 85% IT
companies (4000 small to large-scale industries),
largest biotechnology companies (265). All these inter-
ventions have transformed the rural landscape into high-
ly dense urban region covering 81.61% with higher
amounts of pollutants in the air and water environment
(Ramachandra and Shwetmala 2009, 2012;
Ramachandra et al. 2015, 2017, 2018b; Ramachandra
and Bharath 2016).

Table 3 Land use analysis of three micro gradients

BSR has 86.35% of the built-up area (Fig. 3(c)) at the
cost of open spaces and vegetation cover from 55.17 to
2.66% from 1973 to 2017 (Fig. 4(c), Table 3). The open
spaces, parks cover, etc. (categorized under “others,”
Table 3) was 37.67% earlier is now reduced to 7.23%
(2017). Mushrooming of multinational IT industries
with large-scale residential apartments has resulted in
the loss of vegetation cover. High-rise apartments, low-
rise apartments, and luxury apartments are blooming
after 2003. The infrastructure developments with the

Year/land use  Built-up (paved surfaces;  Vegetation (tree

Water (lakes; Others (open spaces; barren;  Overall accuracy;

type (Ha) roads; buildings) cover; parks; scrub  river; streams)  fallow; agriculture land) kappa

PIE
1973 3.06 647.37 2.79 268.65 88.76; 0.81
1992 301.32 508.05 5.31 107.19 84.08; 0.82
2003 645.57 191.79 10 74.51 88.91; 0.85
2008 686.79 147.96 8.1 79.02 85.53; 0.79
2012 777.42 3143 9.07 103.95 90.16; 0.83
2017 805.59 19.42 9.02 87.84 91.33; 0.9

WF
1973 35.46 1357.11 25.65 787.05 88.56; 0.82
1992 217.98 1232.73 8.64 745.92 88.01; 0.86
2003 712.17 658.62 0.99 833.49 83.37; 0.79
2008 825.93 580.41 12.42 786.51 90.29; 0.88
2012 1512.27 172.35 36.09 484.56 91.02; 0.86
2017 1799.64 39.42 35.28 330.93 88.91;0.87

BSR
1973 72.18 1880.11 171.98 1298.25 81.31; 0.78
1992 563.76 1588.86 159.03 1110.87 86.66; 0.84
2003 1299.87 583.92 64.98 1473.75 89.07; 0.86
2008 2026.08 558.9 81.09 756.45 85.6; 0.81
2012 2702.34 129.96 134.55 455.67 84.36; 0.85
2017 2955.42 91.08 128.7 247.32 90.41; 0.89
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Fig. 3 Temporal land use analysis across three micro gradients (PIE: Peenya Industrial Estate; WF: White Field, BSR: Bangalore South
Region) from 1973 to 2017
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Fig. 4 Temporal land use analysis across three micro gradients (a. PIE: Peenya Industrial Estate; b. WF: White Field, BSR: c. Bangalore
South Region) from 1973 to 2017
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Fig. 5 Spatial pattern analysis across (a) PIE, (b) WF, and (c) BSR regions
widening of Hosur road, the elevated expressways, etc. east, southeast, and south of Bangalore. The current
have led to the spread of commercial complexes towards urban growth across the regions are posing pressures
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on the biophysical environment while triggering water
bodies pollution, biodiversity loss, and drastic changes
in the local climate. With an increase of impervious
surfaces, replacing soil and vegetation has altered albe-
do and surface runoff water characteristics that signifi-
cantly influence the processes of the surface atmospher-
ic energy exchange at the local and regional scales
(Madanian et al. 2018). These ecological and environ-
mental changes have affected ecosystem services, ulti-
mately influencing their ability to sustain the urban
population and its infrastructure (Keshtkar and Voigt
2016).

Spatial pattern of LU dynamics: The spatial pattern of
LU changes during 1973 to 2017 is assessed through
chosen landscape metrics (Fig. 5). CA shows PIE region
has the least cover of built-up in 1973 and reached
805.59 ha by 2017 and depicts the larger land use
category. CA of WF shows vegetation cover dominated
until 2003 and by 2012, built-up has become a most
dominating feature, the same trend can be seen in BSR.
NP metrics depicts PIE has a larger number of patches
until 2003 indicating fragmentation. NP value has come
down by 2017, with the formation of intermediate
patches, and resulting in a single dense urban patch.
The same trend can be observed in the other two regions
with the decline of vital land uses due to the expansion
of built-up area. LPI index shows that vegetation was a
dominant class with the largest patch across all regions
during 1973. But by 2003, the built-up region is the
largest patch, due to an increase in built-up cover, PIE,
WEF region. LPI depicts dominance of built-up with an
uneven distribution of other land use classes. AWMPFD
shows built-up class values approach 2 (shapes with

highly convoluted perimeter) due to intense urbaniza-
tion at the expense of open spaces. ROS depicts open
space cover in the region, and least open space ratio
exists across three regions. BSR shows ratio as 0.08
depicts dominance of a single class such as built-up
cover from 1973 to 2017.

Modeling and visualization of LU changes: The vi-
sualization and future land use transitions for three
urban gradients are calculated using CA-Markov chain
process considering land uses of 2003, 2008, and 2012.
The transition probability matrices for three regions
were estimated, which aided in the simulation and pre-
diction of likely changes. The prediction has been done
considering water bodies as a constraint with an as-
sumption that water bodies would remain constant over-
all time period due to the stringent norms with awakened
citizens. The model was validated by comparing the
predicted versus the actual for the years 2012 and
2017 land uses with an allowable error of 0.15. Analysis
and comparison of the simulated and actual land uses of
2012 and 2017 reveal that the CA-Markov model is a
reliable estimator in terms of change quantification and
for continuous space change modeling (Table 4 and
Fig. 6). The PIE region shows a noticeable change in
its land use due to existing facilities and the requirement
of expansion of amenities to cater the demand of
burgeoning population. Built-up is likely to cover
92.12% of PIE region at the cost of open areas and
vegetation. Eighty-nine percent of the WF landscape
will be urbanized by 2022 from 1.6% (1973) at the cost
of vegetation cover. This rural landscape has earlier
catered the vegetable and milk demand of Bangalore.
The urbanization has replaced the regions under

Table 4 Land use details of simulated (2017), projected (2022) and their accuracy

Region PIE WF BSR

Year Simulated 2017 Projected 2022 Simulated 2017 Projected 2022 Simulated 2017 Projected 2022
Category Ha % Ha % Ha Ha % Ha % Ha %
Built-up 809.75  87.84  849.24  92.12  1815.63 8233 1983.06 89.92 299934 87.64 3088.53 90.24
Vegetation  9.18 1.00 243 0.26 39.6 1.80 29.07 1.32 50.67 1.48 315 0.92
Water 14.9 1.62 18.27 1.98 22.5 1.02 243 1.1 136.35 3.98 128.7 3.76
Others 88 9.55 51.93 5.63 327.54 14.9 168.84 7.66 236.16 6.9 173.79 5.08
Total area ~ 921.87 2205.27 3422.52

Kno 0.89 0.86 0.88

Klocation  0.84 0.87 0.86

Kstandard ~ 0.82 0.83 0.83
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Fig. 6 Simulated and projected land use of micro gradients. (a) Peenya. (b) Whitefield. (c) Bangalore South

agriculture and horticulture crops with paved surfaces,
posing serious challenges to the local ecology. BSR
region is likely to be occupied up to 90% under built-
up. The region has a good number of water bodies, but
with the sustained inflow of untreated sewage and in-
dustrial effluents has adversely affected water quality
(surface as well as ground water) and ecology. The
irrational increase in built-up has impacted vegetation
and open spaces in all these three micro gradients. The
analysis of temporal changes in these growth centers
highlights the need for policy interventions to regulate
unrealistic urban expansions in the region.

Conclusion

Planned urbanization through policy interventions is
quintessential for the sustenance of natural resources
and also people’s livelihood. This entails holistic ap-
proaches in urban development while preserving the
areas of ecological and environmental significance to
ensure the inter-generational equity. Land use changes
due to unplanned urbanization have led to a severe
decline in open spaces leading to imbalances with the
scarcity of natural resources (water, etc.). Urban analy-
ses at microscales highlight the role of agents such as IT
revolution, industrialization, commercial activities in
urbanization, and the loss of vegetation cover. BSR
has lost major vegetation and open spaces and resulted
in 86.35% of the built-up area by 2017. PIE has 87.39%

region covered with the built-up area and only 2.11%
under vegetation. WF has transformed from village-
based ecosystem to highly polluted urban pocket within
four decades covering 81.61% built-up area. These re-
gions highlight the extent of mismanagement of open
spaces (vegetation cover, water bodies, etc.) in the city,
though the unplanned developmental activities in these
regions have provided direct-indirect employment and
business opportunities, but resulted in degradation of the
biophysical environment, affecting the health of citizen
and also a scarcity of natural resources. Spatial patterns
of urbanization in three regions through landscape met-
rics show least NP values representing single class dom-
inance. ROS depicts least ratios of open space with the
more convoluted shape as compared with 1973 due to
progression in built-up cover. The results highlight the
necessity of effective planning and restriction on further
exploitation of other land use features for human well-
being. There is an urgent need to mitigate the impacts
through integrated planning strategies and policies.
Modeling and visualization reveal built-up area likely
to cover 92.12% of PIE region at the cost of open areas
and vegetation as compared with others. The rampant
urbanization due to accelerated economic performance
in three micro gradients is signified vast LU transition
through stressing the environment, degrading vital nat-
ural resources. Mapping and modeling LULC changes
using multi-resolution remote sensing data have provid-
ed an accurate, spatially detailed and consistent urban
mapping capabilities over a temporal scale, which
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enables decision-makers to evolve appropriate land use
strategies with conservation measures to protect the vital
ecosystems from further degradations.
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